-
Metaphor Detection Using Contextual Word Embeddings From Transformers(Liu, J., O’Hara, N., Rubin, A., Draelos, R., & Rudin, C. 2020)논문 리뷰/Disambiguation 2021. 8. 7. 16:06
Liu, J., O’Hara, N., Rubin, A., Draelos, R., & Rudin, C. (2020, July). Metaphor detection using contextual word embeddings from transformers. In Proceedings of the Second Workshop on Figurative Language Processing (pp. 250-255).
<선행연구>
●구 automatic metaphor detection: hand-creafting informative features에 집중& supervised machine learning algorithm 사용
-features: POS tag, concreteness, iageabilitym semantic distributions, semantic classes(by wordNet etc)
●deep learning models: LSTM+word embedding+features(ex. concrete rates)
●contextual embedding의 필요성 존재: bank robber vs river bank 구분
-transformer-based embeddings 사용: BERT, GPT2, XLNet
<연구대상>
●metaphor detections
<실험방법>
1. 임베딩
● contextualized embeddings 생성
-pretrained model에 feature-based로 생성
2. 실험 architecture
●BERT: huggingface, 12-lyrs, 768차원, 12head, 110Mparameters, pretrained
-VUA, TOEFL dataset 학습, tokenizer도 BERT꺼로(subword 가능)
● XLNet: huggingface, VUA, TOEFL사용, pretrained
● 두 모델 concatenate: 1536 차원의 word embedding
-catch contextual informations
-POS tag도 사용(stanford parser 사용)
●Neural Network: Bi-LSTM; long-range relationships 캐치
-dense lyr, acti.는 sigmoid 사용, binary cross entropy
-ensemble strategy(Wu et al.2018): 다르게 initialization된 4개의 Bi-LSTM을 훈련
이후 결과의 평균
●서로 다른 문맥에 쓰인 같은 단어들에 비슷한 probabilities 부여 경향
-> prediction is higher than the average prediction means that words was a good indicator of the presence of metaphor.: test 때 이 개념 사용
<결론>
●dataset이 작을수록(TOEFL < VUA) F1score 감소
●bi-directional relationships btw words play a crucial role in metaphor detection. (XLNet > GPT2)
●K-Nearest Neighbours combined
-전제: whether a specific use of a specific word is more likely to be metaphorical.
-lemmatized
-LSTM과 KNN은 각자 다른 information을 catch