ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Metaphor Detection Using Contextual Word Embeddings From Transformers(Liu, J., O’Hara, N., Rubin, A., Draelos, R., & Rudin, C. 2020)
    논문 리뷰/Disambiguation 2021. 8. 7. 16:06

    Liu, J., O’Hara, N., Rubin, A., Draelos, R., & Rudin, C. (2020, July). Metaphor detection using contextual word embeddings from transformers. In Proceedings of the Second Workshop on Figurative Language Processing (pp. 250-255).

     

    <선행연구>

    automatic metaphor detection: hand-creafting informative features에 집중& supervised machine learning algorithm 사용

        -features: POS tag, concreteness, iageabilitym semantic distributions, semantic classes(by wordNet etc)

    deep learning models: LSTM+word embedding+features(ex. concrete rates)

    contextual embedding의 필요성 존재: bank robber vs river bank 구분

        -transformer-based embeddings 사용: BERT, GPT2, XLNet

     

    <연구대상>

    metaphor detections

     

     

    <실험방법>

    1. 임베딩

    contextualized embeddings 생성

        -pretrained modelfeature-based로 생성

     

    2. 실험 architecture

    BERT: huggingface, 12-lyrs, 768차원, 12head, 110Mparameters, pretrained

        -VUA, TOEFL dataset 학습, tokenizerBERT꺼로(subword 가능)

    XLNet: huggingface, VUA, TOEFL사용, pretrained

    두 모델 concatenate: 1536 차원의 word embedding

        -catch contextual informations

        -POS tag도 사용(stanford parser 사용)

    Neural Network: Bi-LSTM; long-range relationships 캐치

        -dense lyr, acti.sigmoid 사용, binary cross entropy

        -ensemble strategy(Wu et al.2018): 다르게 initialization4개의 Bi-LSTM을 훈련

    이후 결과의 평균

    서로 다른 문맥에 쓰인 같은 단어들에 비슷한 probabilities 부여 경향

        -> prediction is higher than the average prediction means that words was a good indicator of the presence of metaphor.: test 때 이 개념 사용

     

    <결론>

    dataset이 작을수록(TOEFL < VUA) F1score 감소

    bi-directional relationships btw words play a crucial role in metaphor detection. (XLNet > GPT2)

    K-Nearest Neighbours combined

       -전제: whether a specific use of a specific word is more likely to be metaphorical.

       -lemmatized

       -LSTMKNN은 각자 다른 informationcatch

    댓글

Designed by Tistory.